Extension Complexity and Realization Spaces of Hypersimplices

نویسندگان

  • Francesco Grande
  • Arnau Padrol
  • Raman Sanyal
چکیده

The (n, k)-hypersimplex is the convex hull of all 0/1-vectors of length n with coordinate sum k. We explicitly determine the extension complexity of all hypersimplices as well as of certain classes of combinatorial hypersimplices. To that end, we investigate the projective realization spaces of hypersimplices and their (refined) rectangle covering numbers. Our proofs combine ideas from geometry and combinatorics and are partly computer assisted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h . C O / 0 50 12 46 v 1 1 6 Ja n 20 05 ALCOVED POLYTOPES

The aim of this paper is to initiate the study of alcoved polytopes, which are polytopes arising from affine Coxeter arrangements. This class of convex polytopes includes many classical polytopes, for example, the hyper-simplices. We compare two constructions of triangulations of hypersimplices due to Stanley and Sturmfels and explain them in terms of alcoved polytopes. We study triangulations ...

متن کامل

Alcoved Polytopes, I

The aim of this paper is to initiate the study of alcoved polytopes, which are polytopes arising from affine Coxeter arrangements. This class of convex polytopes includes many classical polytopes, for example, the hyper-simplices. We compare two constructions of triangulations of hypersimplices due to Stanley and Sturmfels and explain them in terms of alcoved polytopes. We study triangulations ...

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

Realization Spaces of Arrangements of Convex Bodies

We introduce combinatorial types of arrangements of convex bodies, extending order types of point sets to arrangements of convex bodies, and study their realization spaces. Our main results witness a trade-off between the combinatorial complexity of the bodies and the topological complexity of their realization space. On one hand, we show that every combinatorial type can be realized by an arra...

متن کامل

The extension of quadrupled fixed point results in K-metric spaces

Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] defined the concept of quadrupled fied point in K-metric spaces and proved several quadrupled fixed point theorems for solid cones on K-metric spaces. In this paper some quadrupled fixed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2018